

22-25 MARÇO 2012

PROGRESSÃO DA EROSÃO INTERNA EM BARRAGENS DE ATERRO

Ricardo Santos

Bolseiro de Doutoramento Departamento de Geotecnia Núcleo de barragens e obras de aterro

> Orientadores Laura Caldeira Emanuel Maranha das Neves

> > © LNEC 2012

Relevância das barragens na sociedade

Relevância das barragens na sociedade

Relevância das barragens de aterro

Relevância das barragens de aterro

Modos de rotura das barragens de aterro

Fases do processo de erosão interna

Fases do processo de erosão interna

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Progressão para erosão tubular

Tunbridge Dam, Tasmânia, Austrália, 11/28/2008 Fonte: Jeffery Farrar (2008)

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Progressão para erosão tubular

Fonte: Hanson e Hunt (USDA, 2007)

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Ensaio de erosão por fuga concentrada

> Furo no final do ensaio

> Evolução dos caudais nos ensaios com progressão da erosão

> Mecânica dos fluidos → Evolução do diâmetro do furo

> Classificação da erodibilidade em função de I_{HET}

Grupo	Índice de taxa de erosão, I _{HET}	Descrição da erosão através de uma fuga
1	<2	Extremamente rápida
2	2–3	Muito rápida
3	3–4	Moderadamente rápida
4	4–5	Moderadamente lenta
5	5–6	Muito lenta
6	>6	Extremamente lenta

> Resultado de I_{HET} nas curvas de compactação

Ensaio de erosão por fuga concentrada > Resultado de τ_c (N/m²) nas curvas de compactação

Limitação da progressão da erosão

Influência de materiais a montante do núcleo

- > Restrição do caudal
- > Preenchimento do tubo de erosão

Limitação da progressão da erosão

WAC Bennett Dam | Canadá

Fonte: Steve Garner, BCHydro (2007)

Altura de aterro=186 m | Comprimento= 2 km Produção de energia elétrica= 13 biliões kWh/ano

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Ensaio de limitação da progressão da erosão

- > Etapas da assemblagem do equipamento
- > Compactação/furação da amostra de ensaio

> Célula de ensaio

Material de montante

Núcleo

© LNEC 2012

> Resultados: Progressão da erosão sem restrição do caudal

> Resultados: Progressão da erosão sem restrição do caudal

> Resultados: Restrição do caudal a montante

> Resultados: Restrição do caudal a montante

> Resultados: Caudal cessa por completo

> Resultados: Erosão diminui durante um período tempo

> Resultados: Erosão diminui durante um período tempo

© LNEC 2

Conclusões

- >O ensaio permite avaliar se existe restrição do escoamento e se a erosão cessa ou diminui devido à presença de um material a montante do núcleo.
- > A restrição do escoamento é influenciada por algumas características do material de montante (finos plásticos ou não plásticos, % finos, % cascalho, forma da curva granulométrica, ...).
- >As condições de compactação do material de montante influenciam a capacidade de restrição do escoamento e de limitação da erosão.

22-25 MARÇO 2012

PROGRESSÃO DA EROSÃO INTERNA EM BARRAGENS DE ATERRO

Ricardo Santos

Bolseiro de Doutoramento Departamento de Geotecnia Núcleo de barragens e obras de aterro

> Orientadores Laura Caldeira Emanuel Maranha das Neves

> > © LNEC 2012