

Investigação sobre o estado de tensão *in situ* num projecto hidroeléctrico profundo

Bruno Figueiredo Luís Lamas José Muralha

Jornadas LNEC – Recursos Naturais e Energia

Lisboa, 23 de Março de 2012

Local em estudo

> Reforço de potência de um empreendimento hidroeléctrico existente

- Novo circuito hidráulico, com uma extensão de cerca de 10 km
- Nova central hidroeléctrica localizada a cerca de 500 m de profundidade

Estado de tensão Porque é necessário medir?

> A topografia desempenha um papel relevante na distribuição das tensões in situ

> Construção de uma caverna de grandes dimensões localizada a grande profundidade

> A libertação do estado de tensão constitui a principal acção durante a escavação da obra subterrânea

> Ensaios de sobrecarotagem (12)

 2 furos de sondagem verticais com 60 m de profundidade executados a partir de uma galeria pré-existente com 160 m de recobrimento

> Ensaios de almofadas planas de pequena área (16)

• Paredes da galeria junto aos furos de sondagem

> Ensaios de fracturação hidráulica (19)

• 2 furos de sondagem verticais com 500 metros de profundidade que atingem o local da futura central hidroeléctrica

> Ensaios de sobrecarotagem

> Ensaios de almofadas planas de pequena área (SFJ)

- Medição directa do estado de tensão numa dada direcção
- Obtenção do estado de tensão 3D através da execução do ensaio em diversos planos
- Bons resultados em maciços rochosos de boa qualidade

Ensaios *in situ* > Ensaios de fracturação hidráulica

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Ensaios *in situ* realizados

>Ensaios de fracturação hidráulica

> Ensaios de fracturação hidráulica

Variação da pressão com o tempo

> Objectivos

- Integração dos resultados provenientes dos diferentes métodos de ensaio realizados em locais diferentes
- Obtenção do estado de tensão mais provável no local com interesse para o projecto da obra subterrânea
- > Desenvolvimento de um modelo numérico tridimensional
 - Consideração dos locais onde foram efectuadas todas as medições
 - Simulação da influência da topografia na distribuição de tensões in situ

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

> Modelo numérico tridimensional

4500 m

> Modelo numérico tridimensional

Direcções principais de tensão

> Comparação de resultados

Magnitude da tensão vertical

Trabalho em curso

- > Integração dos resultados provenientes dos ensaios de sobrecarotagem e de almofadas planas de pequena área
- > Implementação de uma metodologia inversa que permita identificar os parâmetros do modelo
 - Ajustamento entre os resultados provenientes do modelo e dos ensaios realizados
 - o Consideração das heterogeneidades do maciço
 - o Consideração de "pesos" associados aos métodos de ensaio
 - o Consideração das incertezas das medições

Agradecimentos

> À EDP pelas facilidades concedidas relativamente ao local em estudo

> Ao Prof. François Cornet da Universidade de Estrasburgo pela sua disponibilidade