

engenharia para a sociedade *investigação e inovação* recursos naturais e energia LNEC · Lisboa · 21-26 e 29 março 2012

Escoamento em rios com inundação dos leitos de cheia

João Nuno Fernandes Bolseiro de doutoramento

Núcleo de Recursos Hídricos e Estruturas Hidráulicas Departamento de Hidráulica e Ambiente

Lisboa, 23 de Março de 2012

© LNEC 2006

ORGANIZAÇÃO DA APRESENTAÇÃO

- Introdução
- Enquadramento
- Caracterização experimental
- Simulação do escoamento
- Conclusões

Bow River (Canadá) – Cheia de 2005

© LNEC 2006

Bow River (Canadá) – Cheia de 2005

ENQUADRAMENTO

- Experiência do LNEC em estudos de cheias e inundações
- Diretiva europeia avaliação e gestão dos riscos de inundações (fluviais)
- Interesse e atualidade científica
- Melhoria dos métodos de medição caracterização experimental
- Tese de doutoramento em curso (IST/UTL)

Ensaios em 2 canais

Ensaios no canal do LNEC

Estudo da influência da altura de escoamento

© LNEC 2006

> Estudo da influência da rugosidade do leito de cheias

0.2

0.4

0.6

Estudo da influência da rugosidade do leito de cheias

Fundo liso *h*_r=0.15

Fundo rugoso h_r=0.15

0.8

y/B,

1.2

> Influência da vegetação das margens do leito principal

Influência da vegetação das margens do leito principal

Influência da vegetação das margens do leito principal

Single Channel Method

 $Q = K R \frac{2}{3} A S_0^{\frac{1}{2}}$

Divided Channel Method (e.g. Hec-Ras)

Tentativa de incluir na modelação do escoamento 1D a resistência ao escoamento provocada pela interacção entre os leitos principal e de cheias

Métodos com diferentes divisões dos leitos:

Weighted divided channel method – WDCM, Lambert and Myers (1998)

 Métodos empíricos de correcção da capacidade de vazão de cada leito: Coherence method – COHM, Ackers (1993) Debord method – DM, Nicollet and Uan (1979)

Métodos com a inclusão das tensões tangenciais aparentes na interface: Exchange discharge method – EDM, Bousmar and Zech (1999) Interacting divided channel method – IDCM, Huthoff et al. (2008) Apperent shear force method – ASFM, Moreta and Martin-Vide (2010)

a 4
$P_{lp} = 0$ $P_{lc} = 0$
2

Aplicação dos métodos a um total de 610 ensaios em canais de secção composta:

Reference	$B_{fp}(m)$	В _{тс} (т)	s _{mc} (-)	S _{fp} (-)	S ₀ (-)	h _r (-)	N
	Symm	etric geometry and	d smooth flo	odplains			
Sellin (1964)	0.171	0.114	0	0	0.00085	0.088-0.236	6
Knight and Demetriou (1983)	0.076-0.229	0.152	0	0	0.00966	0.108-0.503	18
Myers (1984)	0.18-0.3	0.16	0	0	0.00093	0.067-0.535	33
James and Brown (1977) T1	0.572	0.279	1	1	0.001-0.003	0.002-0.311	50
James and Brown (1977) T2	0.191	0.279	1	1	0.001-0.003	0.008-0.383	42
James and Brown (1977) T3	0.191	0.279	1	1	0.001-0.003	0.02-0.423	38
James and Brown (1977) T12	0.502	0.381	1	1	0.001-0.003	0.011-0.315	19
Wormleaton and Merret (1990) s1, s2, s3	2.25	1.8	1	0	0.00103	0.041-0.5	23
Knight and Shiono (1996) s8	2.25	1.8	0	0	0.00103	0.05-0.5	8
Knight and Shiono (1996) s10	2.25	2.1	2	0	0.00103	0.051-0.464	8
Knight and Shiono (1996) s6	2.25	1.8	1	0	0.00103	0.052-0.503	8
Atabay (2001)	0.407	0.398	0	0	0.00202	0.071-0.49	13
	Symn	netric geometry an	d rough flo	odplains			
James and Brown (1977) T13	0.502	0.381	1	1	0.001-0.003	0.044-0.385	18
Wormleaton et al. (1982)	0.46	0.288	0	0	0.00043-0.0018	0.111-0.429	40
Noutsopoulos and Hadjipanos (1983)	0.225-0.425	0.15	0	0	0.0015	0.187-0.479	16
Prinos e Townsend (1984)	0.381	0.244-0.367	1	0	0.0003	0.089-0.329	40
Knight and Hamed (1984)	0.076-0.229	0.152	0	0	0.00097	0.104-0.518	48
Wormleaton and Merret (1990) s7	2.25	1.8	1	0	0.00103	0.038-0.505	8
Hu, Gi and Guo (2010)	0.35-0.35	0.3	0	0	0.001	0.341-0.528	5
Tang	0.407	0.398	0	0	0.00199-0.00207	0.172-0.603	29
	Asymn	netric geometry an	d smooth fl	oodplains			
Myers (1978)	0.356	0.254	0	0	0.00026	0.086-0.394	10
Atabay (2001)	0.407	0.398	0	0	0.00204	0.165-0.499	8
Bousmar (2002)	0.4	0.4	0	0	0.0009-0.00099	0.081-0.366	4
Proust (2005)	0.8	0.4	0	0	0.0018	0.219-0.412	3
	Asymi	metric geometry ar	nd rough flo	odplains			
James and Brown (1977) T5	0.368	0.279	1	1	0.001-0.003	0.002-0.444	36
James and Brown (1977) T6	0.368	0.279	1	1	0.001-0.003	0.048-0.413	43
James and Brown (1977) T7	0.502	0.279	1	1	0.001-0.003	0.008-0.378	29
Rajaratnam and Ahamadi (1981)	0.508	0.711	0	0	0.00036-0.000724	0.101-0.463	7

Aplicação dos métodos a um total de 610 ensaios em canais de secção composta:

© LNEC 2006

Simétricos e leitos de cheia lisos

Assimétricos e leitos de cheia lisos

Simétricos e leitos de cheia rugosos

Assimétricos e leitos de cheia rugosos

Simétricos e leitos de cheia lisos

Assimétricos e leitos de cheia lisos

Simétricos e leitos de cheia rugosos

Assimétricos e leitos de cheia rugosos

• Resultados:

Canal único Divisão do canal

Conclusões

- A interação entre os escoamentos dos leitos principal e de cheias deve ser tida em conta
- Maior importância para alturas de escoamento pequenas e com leitos de cheia rugosos
- Necessidade de incluir esses efeitos na estimativa da capacidade de vazão