

1. INTRODUÇÃO

- CONTEXTO
 - Preservação do património construído
 - Intervenções sustentáveis
 - Uso de materiais compatíveis
- MOTIVAÇÃO
 - Escassez de estudos sobre este assunto
 - Preservação dos estuques de gesso portugueses

2. METODOLOGIA

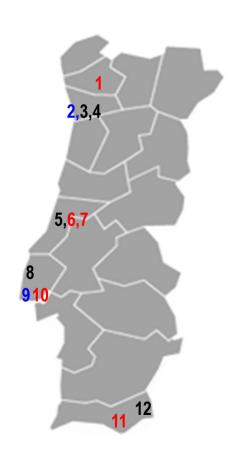
- Caracterização mineralógica preliminar dos revestimentos interiores antigos portugueses:
 - Vários períodos (Romano, Árabe, Barroco e Pós-Barroco)
 - Várias regiões (Norte, Centro e Sul)
- Caracterização dos estuques de gesso séculos XVIII XX
- Desenvolvimento de novos produtos, para o restauro e/ou conservação dos existentes
- Estudos de compatibilidade entre os novos materiais e os antigos

2. METODOLOGIA

Materiais

- Visitas a centros de recolha e armazenamento de materiais arqueológicos períodos romano e islâmico;
- Visitas a edifícios antigos estucados, a necessitar de intervenção, ou com intervenções em curso, para recolha de materiais originais, devidamente datados e sem patologias associadas restantes períodos.

2. METODOLOGIA


Caracterização mineralógica preliminar (DRX)

2. METODOLOGIA

• Caracterização de estuques de gesso: séculos XVIII-XX

CASOS DE ESTUDO: 12 Nº AMOSTRAS: 38 CAMADAS INDIVIDUAIS: 50

Norte

- 1. Fafe Cine-Teatro, século XX
- 2. Porto Sé, Capela do Santíssimo, século XVIII
- 3. Porto Edifício R. Restauração, século XIX
- 4. Porto Palácio da Bolsa, século XIX

Centro

- 5. Leiria Palácio Barão Salgueiro, século XIX
- 6. Leiria Edifício Garage, século XX
- 7. Leiria Edifício Beira-Rio, século XX

Centro-Sul (região de Lisboa)

- 8. Sintra Palácio de *Monserrate*, século XIX
- 9. Oeiras Casa de Pesca, Marquês de Pombal, século XVIII
- 10. Lisboa Av. Liberdade, século XX

Sul

- 11. Estoi, Faro Palácio de Estoi, séculos XIX-XX
- 12. Tavira Igreja do antigo Convento de S. Francisco, século XIX

2. METODOLOGIA

• Caracterização de estuques de gesso: séculos XVIII-XX

QUÍMICA E MINERALÓGICA (metodologia *Santos Silva et al.*, DM-NMM):

DRX

ATG-ATD

Microscopia ótica (observação visual, estratigrafia, análise petrográfica)

MEV-AXDE

FT-IR (pesquisa de orgânicos em algumas amostras) - Univ. Évora e LCR-JF

2. METODOLOGIA

• Caracterização de estuques de gesso: séculos XVIII-XX

PROPRIEDADES FÍSICAS (DED-NRI):

Coeficiente de absorção capilar (método adaptado a argamassas antigas, *Veiga et al.*)

Módulo de elasticidade dinâmico (MED), por ultrasons

Resistência à compressão (método adaptado argamassas antigas, Válek & Veiga)

Estrutura porosa (MIP)

Permeabilidade à água e ao vapor de água (EN 1015-19, adaptada)

Higroscopicidade (absorção de água sob a forma de vapor)

Coeficiente de dilatação térmica e higrométrica

2. METODOLOGIA

PROPRIEDADES FÍSICAS (DED-NRI):

Método de determinação da absorção de água por capilaridade em amostras de argamassas antigas, habitualmente friáveis e irregulares (Veiga et al. 2004)

2. METODOLOGIA

PROPRIEDADES FÍSICAS (DED-NRI):

Determinação da resistência à compressão em amostras antigas pelo método da argamassa de confinamento (Válek &Veiga, 2005; Magalhães & Veiga, 2009)

2. METODOLOGIA

• Desenvolvimento de produtos de restauro compatíveis

Definição e caracterização dos constituintes (gessos, agregados e adjuvantes)

Além das propriedades determinadas nos antigos:

- durabilidade às acções decorrentes do uso
- fissuração → retração baixa
- aderência aos suportes antigos

3. RESULTADOS EXPERIMENTAIS

• Caracterização mineralógica preliminar (DRX) - 105 amostras

Período histórico	Casos de estudo	Amostras analisadas	Principais constituintes
Romano (séc. I a.C VI d.C.)	3	10	Calcite, quartzo e outros como vestígios (feldspato, mica, aragonite)
Islâmico (séc. X - XIII)	4	26	Calcite, quartzo, gesso* (2 amostras) e outros (feldspato, aragonite, goetite)
Barroco (séc. XVII**- XVIII)	11	24	Calcite, gesso , vestígios de quartzo
Pós-Barroco (séc. XIX – XX)	14	45	Gesso, calcite e outros como vestígios (quartzo, hematite, anidrite, aragonite)

^{*} Também detetado na Mesquita de Mértola, LNEC, 2006;

^{**} Embora não pertença ao período Barroco, incluiu-se aqui o caso da Charola do Convento de Cristo, do século XVI

3. RESULTADOS EXPERIMENTAIS

ATG-ATD – Amostras séculos XVIII-XX

Tipo de amostra	Nº amostras	Teor médio em gesso (%)	Teor médio em calcite (%)
Revestimentos lisos	19	38	53
Moldados in situ	6	56	41
Moldados em bancada	5	min. 39 - max. 94	min. 2 – max. 57
Pré-moldados	14	89	8
Camadas de regularização	3	67	28
Massas de colagem	3	48	50

3. RESULTADOS EXPERIMENTAIS

• Propriedades físicas - Amostras séculos XVIII-XX

Propriedade	Revestimentos lisos	Moldados in situ	Moldados em bancada	Pré- moldados
MED (MPa)	1123-3908 ^a 20031 ^b (8)	1885-4378 (5)	2115-4683 <mark>, 9735^d</mark> (4)	2590-4312 (9)
Rc (N/mm²)	0,8-1,4 ^c (4)	1,0-4,2 (4)	2,7 ^d (1)	1,4-5,3 (5)
Ccc - 5 min (kg/m²h¹/²)	0,4-10,4 ^c (7)	16,6 (1)	1,8 ^d e 13,0 (2)	0,8-11,3
Higroscopicidade 90% HR (%)	0,2-0,4 (4)	0,3 e 0,6 (2)	1,0 (2)	0,2-0,7 (5)
PVA (ng/m.s.Pa)	18,4-34,7, 0,4 ^b (6)	-	13,6 e 51,5 (2)	-
Porosidade total (%)	42,8-52,5 (4)	53,0 e 59,7 (2)	12,3 ^d (1)	46,0-53,7 (3)

^a Nas amostras mais finas, foi medido pelo método indireto; ^b Amostra PM1-1B, Palácio de Monserrate; ^c Medido juntamente com a argamassa subjacente; ^d Amostra PE4/2, Palácio de Estoi.

^{() –} nº amostras analisadas

4. PRODUTOS DE RESTAURO

- Compatíveis com os materiais existentes
- Não contribuir para acelerar a sua degradação
- Não interferir na harmonia estética do edifício

Possuir características químicas e físicas semelhantes

4. PRODUTOS DE RESTAURO

- MATERIAIS Produtos em pó:
 - Gesso hemihidratado

CaSO₄.1/2H₂O

- Cal aérea calcítica hidratada

 $Ca(OH)_2$

- Aditivos orgânicos

Retardadores de presa, retentores de água...

4. PRODUTOS DE RESTAURO

• CRITÉRIOS DE COMPATIBILIDADE – 3 Classes de produtos, 7 formulações:

Produto de restauro	Revestimentos lisos (L1, L2)	Moldados <i>in situ</i> (M1, M2)	Pré-moldados (P1, P2, P3)
MED (MPa)	800-1500	1500-2500	2500-3500
Rc (N/mm²)	0,7-1,0	1,0-1,5	1,5-2,5
Ccc - 5 min (kg/m ² h ^{1/2})	5-10	10-15	5-10
PVA (ng/m.s.Pa)	> 20	> 20	> 20
Porosidade total (%)	40-55	50-60	40-55

4. PRODUTOS DE RESTAURO

Ensaios de DURABILIDADE (T, HR)

Choque de esfera

Dureza superficial

Aderência

5. CONCLUSÕES

1. Ficou a saber-se a composição dos revestimentos interiores antigos portugueses desde a época romana, concluindo-se que, salvo raras exceções (todas em construções de elevado valor patrimonial), o gesso só foi utilizado na construção a partir do século XVIII;

- 2. A caracterização química e mineralógica das amostras pertencentes aos casos de estudo do século XVIII à primeira metade do século XX permitiu identificar a existência de três tipos de elementos estucados, cuja composição está diretamente relacionada com a sua forma de aplicação em obra, não se verificando variações relacionadas com a respetiva localização geográfica:
 - Elementos pré-moldados (gesso é praticamente o único constituinte);
 - **Elementos moldados in situ** (cerca de metade gesso, metade cal);
 - Revestimentos lisos (cal e gesso, com predominância da cal);

- 3. A determinação das propriedades físicas das mesmas amostras permitiu concluir que:
 - A capilaridade é a característica mais variável, possivelmente devido ao uso de aditivos orgânicos (cuja presença foi detetada em três casos), sendo impossível estabelecer critérios de compatibilidade consistentes para os produtos de restauro;

- 3. A determinação das propriedades físicas das mesmas amostras permitiu concluir que:
 - As características mecânicas estão geralmente relacionadas com os teores de gesso e calcite, mas são também influenciadas pelo uso de aditivos orgânicos, bem como pela preparação e técnicas de aplicação dos materiais;
 - A permeabilidade ao vapor de água revelou-se muito semelhante à das argamassas de cal, embora a porosidade total seja bastante superior:
 40-55%, contra 20-45% (Magalhães et al., 2004);

- 3. A determinação das propriedades físicas das mesmas amostras permitiu concluir que:
 - Existe uma relação direta entre distribuição porosimétrica, higroscopicidade e microestrutura. Este é um resultado muito importante, não só para o desenvolvimento dos produtos de restauro, mas também para o conhecimento do comportamento higroscópico destes materiais tradicionais.

5. CONCLUSÕES

4. A partir da caracterização química e física das amostras antigas (séculos XVIII-XX) foi possível definir sete formulações a ensaiar numa primeira fase e estabelecer critérios de compatibilidade para a escolha das três que melhor os cumpram, uma para cada tipo de aplicação.

5. CONCLUSÕES

Os ensaios de caracterização das sete formulações iniciais estão em fase de conclusão, prevendo-se a escolha das três formulações finais para o início de Setembro. Realizar-se-ão de seguida os ensaios de durabilidade sobre aplicações destes produtos em tijolos, previamente revestidos com um argamassa tradicional de cal aérea.

LINHAS INVESTIGAÇÃO FUTURAS

- Ensaios em obra dos produtos de restauro desenvolvidos neste trabalho, de forma a complementar o estudo laboratorial de compatibilidade entre estes e os materiais antigos;
- Aprofundamento do estudo dos estuques de cada uma das épocas de forma a identificar os aspetos mais significativos das técnicas e dos materiais usados e a possibilitar o desenvolvimento de produtos de restauro mais adaptados a cada caso.

