

- P. Candeias
 - E. Coelho
- P. Lourenço
- A. Campos Costa

LNEC, 2012-06-20

© LNEC 2006

Introdução

>Estudo do comportamento sísmico dos edifícios "gaioleiros", sem e com reforço sísmico, recorrendo a ensaios experimentais e a simulações numéricas, tendo em vista a avaliação da sua vulnerabilidade sísmica

>Ensaios realizados no âmbito do projeto "Mitigação do risco sísmico em Portugal" (FCT)

>Trabalho desenvolvido no âmbito do projeto "Avaliação da vulnerabilidade sísmica de edifícios antigos de alvenaria" (FCT)

Edifícios "gaioleiros"

- >Edifícios com estrutura de alvenaria construídos entre meados do século XIX e princípios do século XX
- >Apresentam quatro pisos ou mais, planta retangular e pavimentos de madeira

Edifícios "gaioleiros"

>A vulnerabilidade sísmica deste tipo de edifícios é influenciada pela sua geometria e estrutura, pelos materiais utilizados e qualidade de construção, pelo estado de conservação e sua localização no quarteirão

Solução 1: Reforço das ligações das paredes aos pavimentos, por meio de conectores metálicos e faixas de fibras de vidro coladas com resinas epoxy

Soluções de reforço

>Solução 2: Ligação de paredes opostas por meio de tirantes ao nível dos pisos

Soluções de reforço

>Solução 3: Reforço dos nembos existentes nas fachadas por meio de faixas de fibras de vidro coladas com resinas epoxy e conectores metálicos [Silva, V.C. – 2001]

Modelos experimentais

 Modelos em escala reduzida 1:3
Paredes em argamassa de fraca resistência a simular a alvenaria de pedra

Pavimentos de madeira a simular os soalhos

Modelos experimentais

Modelo 00

Modelo 2

Modelo 3

- >Ensaios realizados na plataforma sísmica triaxial do LNEC
- >Solicitação sísmica de acordo com o espectro de resposta do RSA (sismo 1, zona A, terreno tipo I, majorado 1,5)

Danos observados

Danos observados

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

> Identificação das propriedades dinâmicas dos modelos entre cada ensaio e acompanhamento da sua evolução $f_n = \frac{\sum_{k=2}^{13} f_k \times 10^{Mag_k} \times \sin(Ang_k) \Big|_{f_k \neq 0}}{\sum_{k=2}^{13} 10^{Mag_k} \times \sin(Ang_k) \Big|} \qquad D_{n,a} \approx 1 - \left(\frac{f_{n,a}}{f_{n,0}}\right)^2$

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

> Amplificação global das acelerações de pico

$$Amplificação^{+} = \frac{\sum_{l=1}^{32} m_l P A_l^{+}}{M \times P G A^{+}}$$

$$Amplificação^{-} = \frac{\sum_{l=1}^{32} m_l P A_l^{-}}{M \times P G A^{-}}$$

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

>Deslocamento, normalizado à altura, do piso 4 relativamente ao nível de referência

$$drift_{global}^{+} = \frac{D_4^{+}}{4800mm} \qquad drift_{global}^{-} = \frac{D_4^{-}}{4800mm}$$

>Deformação horizontal das paredes no piso 4 medida a meio da largura relativamente à corda que une os cunhais adjacentes e normalizada pela largura da parede

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

>Curvas de capacidade que representam os valores máximos do coeficiente sísmico e do deslocamento do topo/altura (não simultâneos)

Análise estática não linear

>Curvas de capacidade numéricas e experimentais do Modelo 0 com o material M1

Conclusões

- >Os padrões de danos observados nos ensaios revelaram que o comportamento sísmico dos modelos é afetado pelas soluções de reforço utilizadas, alterando-se substancialmente e em conformidade com as diferentes características de cada uma das soluções
- > O comportamento sísmico global, expresso através de curvas de capacidade, revelou uma ligeira melhoria, quer em força, quer em deformação, nos modelos reforçados relativamente aos não reforçados, tal como a capacidade de dissipação da energia introduzida

Conclusões

>Foi ao nível das respostas locais que se registaram as melhorias mais significativas, tendo-se verificado uma redução dos deslocamentos para fora do plano das paredes e, portanto, um melhor controlo dos mecanismos de colapso locais

>Nas análises numéricas obtiveram-se resultados que são comparáveis não só entre modelos numéricos como também com os modelos experimentais

Linhas de investigação futura

>Realização de programas experimentais de modo a aprofundar o estudo do comportamento sísmico dos edifícios "gaioleiros"

>Construção de modelos com "verdadeira" alvenaria de pedra

Linhas de investigação futura

- > Procura de novas soluções de reforço sísmico que permitam, nomeadamente, aumentar a rigidez ou a capacidade resistente dos modelos
- >Introdução de peças metálicas horizontais junto às paredes e de tirantes diagonais sob os pavimentos

Linhas de investigação futura

- >Avaliar a importância do efeito de quarteirão no comportamento sísmico dos edifícios individuais dado que a reconhecida deficiência das ligações entre elementos estruturais e não estruturais existente nestes edifícios também se deverá repercutir no conjunto
- >Aplicação de métodos de inferência bayesiana para atualização das curvas de vulnerabilidade sísmica da tipologia

Agradecimentos

>Ao LNEC

>À Universidade do Minho

>À Fundação para a Ciência e Tecnologia (Bolsa de Doutoramento SFRH/BD/12469/2004)

Procedimento de ensaio

Número	Ensaio	PGA nominal*	Ficheiro	Amostras
0	Identificação modal 0	**	cat_00.bin	48000
1	Solicitação sísmica 0	20%	fct_20.bin	8192
2	Identificação modal 1	**	cat_20.bin	48000
3	Solicitação sísmica 1	50%	fct_50.bin	8192
4	Identificação modal 2	**	cat_50.bin	48000
5	Solicitação sísmica 2	75%	fct_75.bin	8192
6	Identificação modal 3	**	cat_75.bin	48000
7	Solicitação sísmica 3	100%	fct_100.bin	8192
8 [§]	Identificação modal 4	**	cat_100.bin	48000

>Curvas de de capacidade numéricas do Modelo 00 com o material M2 (controlo em força)

>Curvas de de capacidade numéricas do Modelo 1 com o material M2 (controlo em força)

>Curvas de de capacidade numéricas do Modelo 2 com o material M2 (controlo em força)

>Curvas de de capacidade numéricas do Modelo 3 com o material M2 (controlo em força)

$Modelo0_L4_F_M1$

Danaga (0.00)

Modelonn I 4 F M2

D	
> 0.00E+00	
< 0.00E+00	
0.0	
MAPLI TUDE	
DEFORMEE	
5.0	

Modelo1 I 4 F M2

D	
> 0.00E+00	
< 0.00E+00	
0.0	
MPLI TUDE	
DEFORMEE	
• •	
5.0	

Modelo? 14 F M2

D	
> 0.00E+00	
< 0.00E+00	
0.0	
AMPLI TUDE	
DEFORMEE	
5.0	

Modelo³ I <u>4</u> F M²

D	
> 0.00E+00	
< 0.00E+00	
MAPLI TUDE	
DEFORMEE	
• •	
5.0	